[1]方瑞明,尚波宇.冷缩式电缆中间接头附件参数的有限元法优化[J].华侨大学学报(自然科学版),2020,41(4):518-524.[doi:10.11830/ISSN.1000-5013.201909011]
 FANG Ruiming,SHANG Boyu.Finite Element Method Optimization of Attachment Parameters of Cold-Shrinkable Cable Intermediate Joint[J].Journal of Huaqiao University(Natural Science),2020,41(4):518-524.[doi:10.11830/ISSN.1000-5013.201909011]
点击复制

冷缩式电缆中间接头附件参数的有限元法优化()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第4期
页码:
518-524
栏目:
出版日期:
2020-07-20

文章信息/Info

Title:
Finite Element Method Optimization of Attachment Parameters of Cold-Shrinkable Cable Intermediate Joint
文章编号:
1000-5013(2020)04-0518-07
作者:
方瑞明12 尚波宇12
1. 华侨大学 信息科学与工程学院, 福建 厦门 361021;2. 华侨大学 福建省电机控制与系统优化调度工程技术研究中心, 福建 厦门 361021
Author(s):
FANG Ruiming12 SHANG Boyu12
1. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China; 2. Fujian Electric Machinery Control and System Optimal Dispatching Engineering Technology Research Center, Huaqiao University, Xiamen 361021, China
关键词:
冷缩式电缆 交联聚乙烯 电场强度 屏蔽管 应力锥 有限元分析
Keywords:
cold-shrinkable cable XLPE electric field strength shielded tube stress cone finite element analysis
分类号:
TM247.06
DOI:
10.11830/ISSN.1000-5013.201909011
文献标志码:
A
摘要:
为了研究冷缩式电缆中间接头的电场分布并对其结构参数进行优化,首先,建立电缆中间接头的有限元仿真模型;然后,利用该模型对中间接头的结构参数配合进行分析;最后,根据分析结果制作一个10 kV冷缩式电缆中间接头,并对该样本开展局部放电和耐压试验.仿真与试验结果表明:通过合理优化应力锥和屏蔽管的结构参数,当应力锥的轴向长度、端部曲率半径及厚度分别为65,25和2.5 mm,屏蔽管长度和端口形状的分别为170 mm和90°,应力锥与屏蔽管之间的距离为60 mm,中间接头本体长度为420 mm时,样品的最大场强和最大切向场强小于30 kV·cm-1(空气击穿场强)且其交界面上的电场分布较为均匀;其可通过局放与耐压试验,满足设计要求,为10 kV冷缩中间接头的合理设计提供理论依据.
Abstract:
In order to study the electric field distribution and optimize the structural parameters of the cold-shrinkable cable intermediate joint, the finite element simulation model of the cable intermediate joint is established firstly, and then the structural parameters matching of the intermediate joint is analyzed by using the model. Finally, a 10 kV cold-shrinkable cable intermediate joint is made according to the analysis results and the sample was made the discharge and voltage withstand test. The simulation and test results show that: By reasonable optimizing the structural parameters of stress cone and shielding tube, when the axial length, curvature radius and thickness of stress cone are 65, 25 and 2.5 mm respectively, the length and shape of shielding tube are 170 mm and 90° respectively, the distance between stress cone and shielding tube is 60 mm, and the length of intermediate joint body is 420 mm. The maximum field strength and tangential field strength of the sample are less than 30 kV·cm-1(air breakdown field strength)and the electric field distribution on theinterface is more uniform. The design requirements can be met by partial discharge and voltage withstand test, which provides a theoretical basis for the reasonable design of 10 kV cold shrinkage intermediate joint.

参考文献/References:

[1] 《电线电缆手册》编委会组.电线电缆手册: 第1册[M].北京:机械工业出版社,2014.
[2] ORTON H.Power cable technology review[J].High Voltage Technology,2015,41(4):1057-1067.DOI:10.13336/j.1003-6520.hve.2015.04.001.
[3] 王劲,覃煜,张行,等.10 kV 交流电力电缆冷缩式中间接头电场仿真[J].广东电力,2018(12):127-133.DOI:10.3969/j.issn.1007-290X.2018.012.018.
[4] 王霞,余栋,段胜杰,等.高压电缆附件设计环节中几个关键问题探讨[J].高电压技术,2018,44(8):2710-2716.DOI:10.13336/j.1003-6520.hve.20180731030.
[5] 周象贤,曹俊平,王少华,等.110 kV电缆中间接头典型缺陷电场三维仿真分析[J].绝缘材料,2018,51(7):54-58.DOI:10.16790/j.cnki.1009-9239.im.2018.07.009.
[6] EL-BAGES M S,ABD-ALLAH M A.Electric field distribution within underground power cables in presence of micro cracks[J].International Journal of Scientific and Research Publications,2016,6(3):160-165.
[7] 廖敏夫,黄金强,葛国伟,等.110 kV XLPE电缆GIS内锥插拔式快速中间接头的设计[J].高电压技术,2016,42(2):485-495.DOI:10.13336/j.1003-6520.hve.2016.02.020.
[8] 余海涛,邵可然,罗俊华.用有限元法优化高压电缆参数[J].高电压技术,2004,30(3):3-4,8.DOI:10.3969/j.issn.1003-6520.2004.03.002.
[9] 李华春,章鹿华,周作春,等.应用有限元方法优化应力锥设计[J].高电压技术,2005,31(11):55-57.DOI:10.3969/j.issn.1003-6520.2005.11.020.
[10] 王霞,王陈诚,吴锴,等.一种新型高压电缆附件优化设计方法[J].西安交通大学学报,2013,47(12):102-109.DOI:10.7652/xjtuxb201312018.
[11] 张龙,张伟,李锐鹏,等.10 kV XLPE电缆终端缺陷仿真与电场分析[J].绝缘材料,2014,47(4):83-88.DOI:10.3969/j.issn.1009-9239.2014.04.021.
[12] ZHENG Zhong,FENG Wei,YU Yang,et al.Investigation of a possible design defect in the power cable terminal through finite element analysis[C]//Proceedings of the 32nd Electrical Insulation Conference.Philadelphia:IEEE Press,2014:43-46.DOI:10.1109/EIC.2014.6869343.
[13] ZHAO Xiaolei,YANG Xiao,GAO Lei,et al.Tuning the potential distribution of AC cable terminals by stress cone of nonlinear conductivity material[J].IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(5):2686-2693.DOI:10.1109/tdei.2017.006043.
[14] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.额定电压35 kV及以下铜芯、铝芯纸绝缘电力电缆 第一部分: 一般规定: GB/T 12976.1-2008[S].北京:中国标准出版社,2008.
[15] HOU Shuai,FU Mingli,LI Chunyang,et al.Electric field calculation and analysis of HVDC cable joints with nonlinear materials[C]//Proceedings of the 11th International Conference on the Properties and Applications of Dielectric Materials.Sydney:IEEE Press,2015:184-187.DOI:10.1109/ICPADM.2015.7295239.
[16] 陈剑,刘春明,王茂海,等.广义有限差分法在静态电磁场计算中的应用[J].电工技术学报,2018,33(7):1579-1587.DOI:10.19595/j.cnki.1000-6753.tces.170548.
[17] IEC CENTRE OFFICE.Power cables with extruded insulation and their accessories for rated voltages from 1 kV(Um=1.2 kV)up to 30 kV(Um=36 kV): Part 4: Test requirements on accessories for cables with rated voltages from 6 kV(Um=7.2 kV)up to 30 kV(Um=36 kV): IEC 60502-4: 2010[S].Switzerland:IEC Centre Office,2010.

备注/Memo

备注/Memo:
收稿日期: 2019-09-10
通信作者: 方瑞明(1972-),男,教授,博士,主要从事电气设备在线监测与故障诊断、可再生能源发电及其并网控制的研究.E-mail:fangrm@126.com.
基金项目: 福建省自然科学基金资助项目(2019J01054); 华侨大学研究生科研创新能力培育计划资助项目(17014082005)
更新日期/Last Update: 2020-07-20