[1]刘树堂,刘时俊,刘天林,等.骨架密实型水泥稳定碎石级配设计方法[J].华侨大学学报(自然科学版),2020,41(5):582-588.[doi:10.11830/ISSN.1000-5013.201912039]
 LIU Shutang,LIU Shijun,LIU Tianlin,et al.Design Method for Gradation of Skeleton-DensityCement Stabilized Macadam[J].Journal of Huaqiao University(Natural Science),2020,41(5):582-588.[doi:10.11830/ISSN.1000-5013.201912039]
点击复制

骨架密实型水泥稳定碎石级配设计方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第5期
页码:
582-588
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Design Method for Gradation of Skeleton-DensityCement Stabilized Macadam
文章编号:
1000-5013(2020)05-0582-07
作者:
刘树堂1 刘时俊1 刘天林2 代金国3 曹卫东1
1. 山东大学 齐鲁交通学院, 山东 济南 250002;2. 潍坊顺达公路工程有限公司, 山东 潍坊 261000;3. 山东宏昌路桥集团有限公司, 山东 潍坊 261000
Author(s):
LIU Shutang1 LIU Shijun1 LIU Tianlin2 DAI Jinguo3 CAO Weidong1
1. School of Qilu Transportation, Shandong University, Jinan 250002, China; 2. Weifang Shunda Highway Engineering Limited Company, Weifang 261000, China; 3. Shandong Hongchang Road Bridge Limited Company, Weifang 261000, China
关键词:
水泥稳定碎石 骨架密实型级配 矿料间隙率 最大干密度 无侧限抗压强度
Keywords:
cement stabilized macadam gradation of skeleton-density voids in mineral aggregate maximum dry density unconfined compressive strength
分类号:
U411
DOI:
10.11830/ISSN.1000-5013.201912039
文献标志码:
A
摘要:
为研究水泥稳定碎石的级配优化设计问题,针对未加水泥的级配矿料,构建矿料间隙率的物理模型,给出骨架密实型级配矿料粗细分界筛孔通过率的计算公式,建立骨架密实型级配设计理论.在考虑细料对粗料排列的干涉作用后,通过试验获得实际意义上的骨架密实型水泥稳定碎石,形成该类材料的级配优化设计方法.结果表明:未加水泥的级配矿料击实试验所得的最大干密度或间隙率可作为判断水泥稳定碎石骨架密实性的简便指标;通过建立的理论模型与优化设计方法,可成功地设计出水泥剂量较低、强度较高的骨架密实型水泥稳定碎石.
Abstract:
In order to investigate the gradation optimization design of cement stabilized macadam, a physical model about voids in the mineral graded aggregate without cement was established. The formula which calculates the passing rate of the particle size between coarse and fine aggregates for the skeleton-density aggregate was presented, and the graded design theory of skeleton density was set up. Considering the interference effect of fine aggregate to coarse aggregate arrangement, the actual skeleton-density graded cement stabilized macadam structure was obtained, and the method of gradation optimization design of this material was formed. The results show that the maximum dry density obtained by heavy compaction test or voids in the mineral graded aggregate without cement can be used as a simple index to determine the skeleton compactness of the cement stabilized macadam. Using the established theoretical model and gradation optimization design method, the skeleton-density cement stabilized macadam with low cement dosage and high strength can be design successfully.

参考文献/References:

[1] 胡力群,沙爱民.骨架密实结构水稳碎石粗集料抗破碎性能研究[J].公路,2005(6):153-157.DOI:10.3969/j.issn.0451-0712.2005.06.034.
[2] LYU Songtao,YUAN Jiang,LIU Chaochao,et al.Investigation of the fatigue modulus decay in cement stabilized base material by considering the difference between compressive and tensile modulus[J].Construction and Building Materials,2019,223:491-502.
[3] DENG Changqing,JIANG Yingjun,LIN Hongwei,et al.Mechanical-strength-growth law and predictive model for cement-stabilized macadam[J].Construction and Building Materials,2019,215:582-594.
[4] 周浩,沙爱民,胡力群.半刚性基层材料疲劳试验[J].长安大学学报(自然科学版),2012,32(3):6-10.DOI:10.19721/j.cnki.1671-8879.2012.03.002.
[5] LYU Songtao,XIA Chengdong,YOU Lingyun,et al.Unified fatigue characteristics model for cement-stabilized macadam under various loading modes[J].Construction and Building Materials,2019,223:775-783.
[6] YU Haichen,SUN Lijun.Trial study on strength and its influence factors of low dosage cement stabilized aggregates[C]//International Conference on Electric Technology and Civil Engineering.Lushan:IEEE Press,2011:12068687.DOI:10.1109/ICETCE.2011.5776142.
[7] WANG Xuancang,FANG Naren,YE Hongyu,et al.Fatigue damage analysis of cement-stabilized base under construction loading[J].Applied Sciences-Basel,2018(11):8-11.
[8] 王峰.骨架密实结构水稳碎石级配设计及路用性能研究[D].武汉:武汉工程大学,2017.
[9] 王峰,熊永松,冯珀楠,等.骨架密实型水稳碎石集料级配设计方法综述[J].建材技术与应用,2016(6):1-3.
[10] 李涛,邹静蓉,汤显平.贝雷法在半刚性基层中的应用[J].公路,2018(12):19-23.
[11] 彭波,尹光凯,李海宁,等.骨架密实型水泥稳定碎石级配设计与分形评价[J].中外公路,2016,36(3):284-288.
[12] 罗迪.不同类型水稳碎石半刚性路面基层材料性能研究[D].长沙:湖南大学,2013.
[13] 冯德成,于飞,巩春伟.基于体积法的水泥稳定级配碎石配合比设计方法[J].公路交通科技,2012,29(10):22-27.DOI:10.3969/j.issn.1002-0268.2012.10.005.
[14] 何昌轩.骨架密实型水泥稳定碎石合理级配范围优化研究[J].公路,2012(6):228-232.DOI:10.3969/j.issn.0451-0712.2012.06.048.
[15] 中华人民共和国交通运输部.公路路面基层施工技术细则: JTG/T F20-2015[S].北京:人民交通出版社,2015.
[16] 刘树堂,曹卫东,李英勇,等.未加沥青矿料(VMAa)物理模型构建与应用[J].中国公路学报,2016,29(8):1-11.
[17] 中华人民共和国交通运输部.公路工程集料试验规程: JTG E42-2005[S].北京:人民交通出版社,2005.
[18] 王选仓,乔志,尹燕,等.半刚性路面材料大压实功压实规律研究[J].中国公路学报,2016,29(6):280-286.
[19] 中华人民共和国交通运输部.公路工程无机结合料稳定材料试验规程: JTG E51-2009[S].北京:人民交通出版社,2009.
[20] 薛忠军,王春明,张伟,等.半刚性基层长寿命路面结构和材料设计研究[J].公路交通科技,2015,32(10):37-42.DOI:10.3969/j.issn.1002-0268.2015.10.007.

备注/Memo

备注/Memo:
收稿日期: 2019-12-29
通信作者: 刘树堂(1964-),男,教授,博士,主要从事路面结构与材料的研究.E-mail:gtreesl@sdu.edu.cn.
基金项目: 山东省自然科学基金资助项目(ZR2013EEM028)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2020-09-20