[1]罗成,张媛媛,秦智胜,等.寒冷地区空气冷却型PV/T系统性能模拟分析[J].华侨大学学报(自然科学版),2020,41(6):784-790.[doi:10.11830/ISSN.1000-5013.202005001]
 LUO Cheng,ZHANG Yuanyuan,QIN Zhisheng,et al.Simulation Analysis on Performance of Air-Cooled PV/T System in Cold Regions[J].Journal of Huaqiao University(Natural Science),2020,41(6):784-790.[doi:10.11830/ISSN.1000-5013.202005001]
点击复制

寒冷地区空气冷却型PV/T系统性能模拟分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第6期
页码:
784-790
栏目:
出版日期:
2020-11-20

文章信息/Info

Title:
Simulation Analysis on Performance of Air-Cooled PV/T System in Cold Regions
文章编号:
1000-5013(2020)06-0784-07
作者:
罗成 张媛媛 秦智胜 邹鹏 程远达
太原理工大学 土木工程学院, 山西 太原 030024
Author(s):
LUO Cheng ZHANG Yuanyuan QIN Zhisheng ZOU Peng CHENG Yuanda
College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
空气冷却型PV/T系统 数值模拟 光电转换效率 热效率 效率
Keywords:
air-cooled PV/T system numerical simulation photoelectric conversion efficiency thermal efficiency exergy efficiency
分类号:
TK519
DOI:
10.11830/ISSN.1000-5013.202005001
文献标志码:
A
摘要:
针对冷却通道位于光伏板上侧的空气冷却型太阳能光伏光热(PV/T)系统,采用验证后的数值模型模拟研究冷却通道长度、高度及空气入口流速等设计参数对系统性能的影响.结果表明:在寒冷地区夏季典型日工况下,随着气象参数的变化,最佳空气入口流速范围为0.8~3.2 m·s-1,对应的系统效率变化范围为14.61%~15.24%.
Abstract:
For the air-cooled photovoltaic/thermal(PV/T)system with the cooling channel located on the upper side of the photovoltaic panel, the influence of the designed parameters including the length and height of the air-cooled channel and the air inlet velocity on the system performance were simulated and studied by the validated numerical model. The results indicate that with the meteorological conditions changing under the typical daily working conditions in summer in cold region, the optimal air inlet velocity range is 0.8-3.2 m·s-1, and the corresponding system exergy efficiency change range is 14.61%-15.24%.

参考文献/References:

[1] SKOPLAKI E,PALYVOS J A.On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations[J].Solar Energy,2009,83(5):614-624.DOI:10.1016/j.solener.2008.10.008.
[2] KERN J E C,RUSSELL M C.Combined photovoltaic and thermal hybrid collector systems[R].Lexington:Lincoln Lab,1978.
[3] TONUI J K,TRIPANAGNOSTOPOULOS Y.Performance improvement of PV/T solar collectors with natural air flow operation[J].Solar Energy,2008,82(1):1-12.DOI:10.1016/j.solener.2007.06.004.
[4] 荆博龙,蔡颖玲,黄兴华,等.吹胀微流道式太阳能光伏/光热(PV/T)集热系统春季实验研究[J].建筑科学,2020,36(4):123-128.DOI:10.13614/j.cnki.11-1962/tu.2020.04.18.
[5] 魏毅立,邓昊翀,马利斌.太阳能热泵系统仿真与分析[J].实验室研究与探索,2019,38(5):102-106.DOI:10.3969/j.issn.1006-7167.2019.05.026.
[6] HAN Xinyue,CHEN Xiaobin,SUN Yao,et al.Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter[J].Energy,2020,192:1-12.DOI:10.1016/j.energy.2019.116611.
[7] HEGAZY A A.Comparative study of the performances of four photovoltaic/thermal solar air collectors[J].Fuel and Energy Abstracts,2000,41(5):301.DOI:10.1016/S0140-6701(00)96620-7.
[8] SHAN Feng,TANG Fang,CAO Lei,et al.Comparative simulation analyses on dynamic performances of photovoltaic-thermal solar collectors with different configurations[J].Energy Conversion and Management,2014,87:778-786.DOI:10.1016/j.enconman.2014.07.077.
[9] 王婷.冷却通道位置对空冷型PV/T系统传热特性和热电转换性能影响的研究[D].重庆:重庆大学,2018.
[10] JOSHI A S,TIWARI A.Energy and exergy efficiencies of a hybrid photovoltaic-thermal(PV/T)air collector[J].Renewable Energy,2007,32(13):2223-2241.DOI:10.1016/j.renene.2006.11.013.
[11] YAZDANPANAHI J,SARHADDI F,ADELI M M.Experimental investigation of exergy efficiency of a solar photovoltaic thermal(PVT)water collector based on exergy losses[J].Solar Energy,2015,118:197-208.DOI:10.1016/j.solener.2015.04.038.
[12] 王福军.计算流体动力学分析 [M].北京:清华大学出版社,2004.
[13] RANGANATHAN S K,ELUMALAI N,NATARAJAN P P.Numerical model and experimental validation of the heat transfer in air cooled solar photovoltaic panel[J].Thermal Science,2016,20(4):1071-1081.DOI:10.2298/TSCI16S4071R.
[14] 常晓琪,杜震宇.微通道太阳能平板集热器的集热性能试验[J].华侨大学学报(自然科学版),2019,40(5):653-660.DOI:10.11830/ISSN.1000-5013.201903032.
[15] 陈琛.冷却通道位于电池板上方的水冷型PV/T系统传热特性及性能的数值模拟[D].重庆:重庆大学,2018.
[16] WU Shuangying,GUO Fenghua,XIAO Lan.A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system[J].International Journal of Green Energy,2015,12(4):379-397.DOI:10.1080/15435075.2013.840833.

相似文献/References:

[1]杨勇,郭子雄.大跨度石穹顶空间结构受力行为数值模拟[J].华侨大学学报(自然科学版),2005,26(3):267.[doi:10.3969/j.issn.1000-5013.2005.03.011]
 Yang Yong,Guo Zixiong.Numerical Simulation on Mechanical Behavior of Large-Span Spatial Structure with Stone Vault[J].Journal of Huaqiao University(Natural Science),2005,26(6):267.[doi:10.3969/j.issn.1000-5013.2005.03.011]
[2]周显鹏,彭兴黔,张松.带悬挑女儿墙双坡屋面风压的数值模拟分析[J].华侨大学学报(自然科学版),2008,29(2):289.[doi:10.11830/ISSN.1000-5013.2008.02.0289]
 ZHOU Xian-peng,PENG Xing-qian,ZHANG Song.Numerical Simulation of Wind Pressures on the Gable Roof with Cantilevered Parapets[J].Journal of Huaqiao University(Natural Science),2008,29(6):289.[doi:10.11830/ISSN.1000-5013.2008.02.0289]
[3]叶勇,徐西鹏.岩石细观强度离散元数值模拟中颗粒形状的影响[J].华侨大学学报(自然科学版),2008,29(4):498.[doi:10.11830/ISSN.1000-5013.2008.04.0498]
 YE Yong,XU Xi-peng.Effect of Particle Shape in the Numerical Simulation of the Rock Mesoscopical Strength by Distinct Element Method[J].Journal of Huaqiao University(Natural Science),2008,29(6):498.[doi:10.11830/ISSN.1000-5013.2008.04.0498]
[4]徐玉野,王全凤,柴振岭.钢筋混凝土柱火灾试验数值模拟的关键技术[J].华侨大学学报(自然科学版),2008,29(4):588.[doi:10.11830/ISSN.1000-5013.2008.04.0588]
 XU Yu-ye,WANG Quan-feng,CHAI Zhen-ling.Key Technologies of Numerical Simulation of Reinforced Concrete Columns in Fire Test[J].Journal of Huaqiao University(Natural Science),2008,29(6):588.[doi:10.11830/ISSN.1000-5013.2008.04.0588]
[5]王传奇,高轩能,李琨.变截面门式刚架的动力特性[J].华侨大学学报(自然科学版),2009,30(1):75.[doi:10.11830/ISSN.1000-5013.2009.01.0075]
 WANG Chuan-qi,GAO Xuan-neng,LI Kun.Dynamic Behavior of Portal Frame Structures with Tapered Members[J].Journal of Huaqiao University(Natural Science),2009,30(6):75.[doi:10.11830/ISSN.1000-5013.2009.01.0075]
[6]王妙芳,郭子雄.型钢混凝土柱的ANSYS数值模拟技术[J].华侨大学学报(自然科学版),2009,30(2):195.[doi:10.11830/ISSN.1000-5013.2009.02.0195]
 WANG Miao-fang,GUO Zi-xiong.Study on Numerical Simulation Technology of Steel Reinforced Concrete Columns Using Ansys Software[J].Journal of Huaqiao University(Natural Science),2009,30(6):195.[doi:10.11830/ISSN.1000-5013.2009.02.0195]
[7]刘晶峰,赵紫玉,方建成,等.过冷熔体枝晶生长的相场法数值模拟[J].华侨大学学报(自然科学版),2009,30(3):239.[doi:10.11830/ISSN.1000-5013.2009.03.0239]
 LIU Jing-feng,ZHAO Zi-yu,FANG Jian-cheng,et al.Numerical Simulation of Dendritic Growth into Undercooled Melt Using Phase-Field Method[J].Journal of Huaqiao University(Natural Science),2009,30(6):239.[doi:10.11830/ISSN.1000-5013.2009.03.0239]
[8]蒋丽丽,林从谋,蔡丽光.爆炸挤淤法处理软基扩腔过程数值模拟[J].华侨大学学报(自然科学版),2009,30(3):331.[doi:10.11830/ISSN.1000-5013.2009.03.0331]
 JIANG Li-li,LIN Cong-mou,CAI Li-guang.Numerical Simulation of the Process of Expanding Cavity by Blasting Silt Removal Method for Soft Soil Treatment[J].Journal of Huaqiao University(Natural Science),2009,30(6):331.[doi:10.11830/ISSN.1000-5013.2009.03.0331]
[9]付海明,尹峰.褶型空气滤清器捕集效率及压力损失[J].华侨大学学报(自然科学版),2009,30(6):650.[doi:10.11830/ISSN.1000-5013.2009.06.0650]
 FU Hai-ming,YIN Feng.Study on Collection Efficiency and Pressure Drop of Pleated Air Filters[J].Journal of Huaqiao University(Natural Science),2009,30(6):650.[doi:10.11830/ISSN.1000-5013.2009.06.0650]
[10]刘飞,李元齐,沈祖炎.新型冷弯薄壁型钢屋架结构承载力分析[J].华侨大学学报(自然科学版),2009,30(6):698.[doi:10.11830/ISSN.1000-5013.2009.06.0698]
 LIU Fei,LI Yuan-qi,SHEN Zu-yan.Analysis on Load-Carrying Capacity of New Cold-Formed Thin-Walled Steel Roof Truss[J].Journal of Huaqiao University(Natural Science),2009,30(6):698.[doi:10.11830/ISSN.1000-5013.2009.06.0698]

备注/Memo

备注/Memo:
收稿日期: 2020-05-02
通信作者: 程远达(1985-),男,教授,博士,主要从事可再生能源利用的研究.E-mail:chengyuanda@tyut.edu.cn.
基金项目: 国家重点研发计划项目(2018YFD1100701)
更新日期/Last Update: 2020-11-20