[1]缪骋,姚瑜,乐其河,等.多孔介质内高浓度过氧化氢催化分解的数值模拟[J].华侨大学学报(自然科学版),2020,41(5):631-637.[doi:10.11830/ISSN.1000-5013.201909015]
 MIAO Cheng,YAO Yu,LE Qihe,et al.Numerical Simulation of Catalytic Decomposition of High Test Hydrogen Peroxide Within Porous Media[J].Journal of Huaqiao University(Natural Science),2020,41(5):631-637.[doi:10.11830/ISSN.1000-5013.201909015]
点击复制

多孔介质内高浓度过氧化氢催化分解的数值模拟()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第5期
页码:
631-637
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Numerical Simulation of Catalytic Decomposition of High Test Hydrogen Peroxide Within Porous Media
文章编号:
1000-5013(2020)05-0631-07
作者:
缪骋 姚瑜 乐其河 张素芝
华侨大学 机电及自动化学院, 福建 厦门 361021
Author(s):
MIAO Cheng YAO Yu LE Qihe ZHANG Suzhi
College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
关键词:
过氧化氢 多孔介质 化学动力学 流体力学 催化分解 催化床
Keywords:
hydrogen peroxide porous media chemical kinetics hydrodynamics catalytic decomposition catalytic bed
分类号:
O643;V511
DOI:
10.11830/ISSN.1000-5013.201909015
文献标志码:
A
摘要:
利用流体力学与化学动力学相结合的方法,探索高浓度过氧化氢在多孔介质(银网或复合离子催化剂)内的分解反应机理.采用Fluent流体仿真软件模拟过氧化氢在使用银网作为催化剂的催化床内的分解反应,分析过氧化氢的分解温度场分布及反应物和产物的组分分布等,讨论不同尺寸、质量流量和壁面条件对温度场和组分分布的影响.结果表明:数值仿真能够较真实地反应过氧化氢的催化分解过程,可为进一步的试验提供可靠的理论依据.
Abstract:
In combination of the hydrodynamics and the chemical kinetics, the decomposition mechanism of high test hydrogen peroxide in the porous media(silver mesh or composite ion catalyst)is explored. Fluid simulation software Fluent is employed to simulate the decomposition of hydrogen peroxide in the catalyst bed of the silver mesh. The decomposition temperature field distribution of hydrogen peroxide and the component distribution of reactants and products are analyzed. The effects of different sizes, mass flows and wall conditions on the temperature field and composition distribution are discussed. The results reveal that the numerical simulation can present the catalytic decomposition process of hydrogen peroxide well, which provides reliable theoretical basis for the further experiments.

参考文献/References:

[1] 游贤德.高浓度过氧化氢贮运安全注技术研究[J].石油和化工设备,2019,22(9):102-104.
[2] 程永喜,温婧,刘旭.美国高浓度过氧化氢与金属材料相容性研究进展[J].化学推进剂与高分子材料,2018,16(5):10-19.DOI:10.16572/j.issn1672-2191.201809038.
[3] 吴春田,王晓东,周秀楠,等.高浓度过氧化氢分解用MnOx/CeO2-Al2O3整体催化剂[J].含能材料,2014,22(2):148-154.DOI:10.3969/j.issn.1006-9941.2014.02.005.
[4] 葛明龙,李强,刘业奎.银网催化床分解过氧化氢的计算方法[J].火箭推进,2009,35(5):43-49.DOI:10.3969/j.issn.1672-9374.2009.05.008.
[5] BO?IC O,PORRMANN D,LANCELLE D,et al.Enhanced development of a catalyst chamber for the decomposition of up to 1.0 kg/s hydrogen peroxide[J].CEAS Space Journal,2016,8(2):77-88.DOI:10.1007/s12567-015-0109-x.
[6] JO S.Response characteristics of H2O2 monopropellant thrusters with MnO2-mixed PbO catalyst[J].Aerospace Science and Technology,2017,60:1-8.DOI:10.1016/j.ast.2016.10.022.
[7] PIRAULT-ROY L,KAPPENSTEIN C,GUE M,et al.Hydrogen peroxide decomposition on various supported catalysts effect of stabilizers[J].Journal of Propulsion and Power,2002,18(6):1235-1241.DOI:10.2514/2.6058.
[8] 周志江,王晓东,单继宏,等.预处理条件对高浓度过氧化氢分解用银网催化剂初始活性的影响[J].催化学报,2006,27(11):957-960.DOI:10.3321/j.issn:0253-9837.2006.11.007.
[9] ZHAO Bao,YU Nanjia,LIU Yufei,et al.Unsteady simulation and experimental study of hydrogen peroxide throttleable catalyst hybrid rocket motor[J].Aerospace Science and Technology,2018,76:27-36.DOI:10.1016/j.ast.2018.02.008.
[10] PLUMLEE D,STECIAK J,MOLL A.Development and simulation of an embedded hydrogen peroxide catalyst chamber in low-temperature co-fired ceramics[J].International Journal of Applied Ceramic Technology,2007,4(5):406-414.DOI:10.1111/j.1744-7402.2007.02161.x.
[11] PLUMLEE D,STECIAK J,MOLL A.Development of a micro-nozzle and ion mobility spectrometer in LTCC[C]//IEEE Workshop on Microelectronics and Electron Devices.Boise:IEEE Press,2004:95-98.DOI:10.1109/WMED.2004.1297362.
[12] 任好玲,谢海波,杨华勇.单组元液压自由活塞发动机关键技术[J].浙江大学学报(工学版),2009,43(5):872-876.DOI:10.3785/j.issn.1008-973X.2009.05.017.
[13] 王弘扬,阮神辉,文青龙,等.基于多孔介质模型的快堆蒸汽发生器热工水力特性数值研究[J].核动力工程,2019,40(5):51-55.DOI:10.13832/j.jnpe.2019.05.0051.
[14] 姚彦贵,施杨.多孔介质模型在核电蒸汽发生器设计中的应用[J].现代计算机(专业版),2014(18):40-43,51.DOI:10.3969/j.issn.1007-1423.2014.18.011.
[15] 胡伟.基于孔隙尺度下丝网多孔介质通道流阻特性[J].山东大学学报(工学版),2019,49(6):119-126.DOI:10.6040/j.issn.1672-3961.0.2019.503.

相似文献/References:

[1]闫洁.渗流铸造过程中流场温度场的数值模拟[J].华侨大学学报(自然科学版),2007,28(1):11.[doi:10.3969/j.issn.1000-5013.2007.01.004]
 YAN Jie.Numerical Simulation of the Flow-Thermal Field in the Process of Penetration Casting[J].Journal of Huaqiao University(Natural Science),2007,28(5):11.[doi:10.3969/j.issn.1000-5013.2007.01.004]
[2]刘淑坡,王黛瑶,王梦云,等.碱催化过氧化氢氧化法对偶氮染料酸橙7的降解性能[J].华侨大学学报(自然科学版),2019,40(2):201.[doi:10.11830/ISSN.1000-5013.201809013]
 LIU Shupo,WANG Daiyao,WANG Mengyun,et al.Effective Degradation of Acid Orange 7 by Alkali-Catalyzed Hydrogen Peroxide[J].Journal of Huaqiao University(Natural Science),2019,40(5):201.[doi:10.11830/ISSN.1000-5013.201809013]

备注/Memo

备注/Memo:
收稿日期: 2019-09-12
通信作者: 缪骋(1991-),男,助理实验师,主要从事电液元件工艺设计和仿真的研究.E-mail:xmmiaocheng@163.com.
基金项目: 福建省自然科学基金资助项目(2017J01087, 2018J01068); 福建省高校产学研重大项目(2017H6013, 2019H6015); 华侨大学实验教学与管理改革项目(SY2019Z012)
更新日期/Last Update: 2020-09-20