[1]张华宇,周帆,廖晓斌,等.质量法测定植物营养液中电导率可行性[J].华侨大学学报(自然科学版),2024,45(2):271-275.[doi:10.11830/ISSN.1000-5013.202312048]
 ZHANG Huayu,ZHOU Fan,LIAO Xiaobin,et al.Feasibility of Mass Method to Measure Electrical Conductivity Rate of Plant Nutrient Solution[J].Journal of Huaqiao University(Natural Science),2024,45(2):271-275.[doi:10.11830/ISSN.1000-5013.202312048]
点击复制

质量法测定植物营养液中电导率可行性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第2期
页码:
271-275
栏目:
出版日期:
2024-03-20

文章信息/Info

Title:
Feasibility of Mass Method to Measure Electrical Conductivity Rate of Plant Nutrient Solution
文章编号:
1000-5013(2024)02-0271-05
作者:
张华宇 周帆 廖晓斌 刘新月 朱家铭 张嘉禾
华侨大学 土木工程学院, 福建 厦门 361021
Author(s):
ZHANG Huayu ZHOU Fan LIAO XiaobinLIU Xinyue ZHU Jiaming ZHANG Jiahe
College of Civil Engineering, Huaqiao University, Xiamen 361021, China
关键词:
电导率 质量法 电极法 总溶解性固体
Keywords:
electrical conductivity rate mass method electrode method total dissolved solid
分类号:
X824
DOI:
10.11830/ISSN.1000-5013.202312048
文献标志码:
A
摘要:
通过与测定电导率的传统电极法对比,探讨运用质量法测定植物营养液电导率的可行性。结果表明:采用质量法测定植物营养液中的电导率,测定值与采用高精度电导率/总溶解性固体水质测试笔测定结果极为接近,分别为19.85,19.30 mS·cm-1;溶液中的颗粒物仅贡献2.4%的电导率,悬浮物和胶体对电导率贡献更低(0.5%),络合态的有机物对电导率贡献也有限;解络后,植物营养液的电导率由19.30 mS·cm-1急剧增至66.68 mS·cm-1
Abstract:
By comparison with the traditional electrode method for measuring the electrical conductivity rate, the feasibility of mass method for measuring the electrical conductivity rate of the plant nutrient solution is discussed. The results show that the electrical conductivity rate in the plant nutrient solution measured by mass method is very close to the results measured by high precision electrical conductivity rate/total dissolved solid water quality test pen, 19.85, 19.30 mS·cm-1 respectively. The particles in the solution contribute only 2.4% the electrical conductivity rate, and suspended solids and colloids contribute less to it(0.5%). The contribution of complexed organic matter to the electrical conductivity rate is also limited. After decomplexation, the electrical conductivity rate of plant nutrient solution increases sharply from 19.30 mS·cm-1 to 66.68 mS·cm-1.

参考文献/References:

[1] MANTHILAKE G,BOLFAN-CASANOVA N,NOVELLA D,et al.Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges[J].Science Advances,2016,2(5):e1501631.DOI:10.1126/sciadv.1501631.
[2] NAU-HIX C,HOLSEN T M,THAGARD S M.Influence of solution electrical conductivity and ionic composition on the performance of a gas-liquid pulsed spark discharge reactor for water treatment[J].Journal of Applied Physics,2021,130(12):1-13.DOI:10.1063/5.0054327.
[3] SRIVASTAV S,ROY S.Changes in electrical conductivity of liquid foods during ohmic heating[J].International Journal of Agricultural and Biological Engineering,2014,7(5):133-138.DOI:10.3965/j.ijabe.20140705.015.
[4] MOONEYD E.Does the ‘Marine Signature’of driftwood persist in the archaeological record? An experimental case study from Iceland[J].Environmental Archaeology,2018,23(3):217-227.DOI:10.1080/14614103.2017.1377404.
[5] DA SILVA A J C,DOS SANTOS E V,DE OLIVEIRA M C C,et al.Electrochemical treatment of fresh, brine and saline produced water generated by petrochemical industry using Ti/IrO2-Ta2O5 and BDD in flow reactor[J].Chemical Engineering Journal,2013,233:47-55.DOI:10.1016/j.cej.2013.08.023.
[6] 代天豪,王中美,陈尧,等.贵阳花溪养牛村暗河枯水期岩溶水动态特征分析[J].中国岩溶,2019,38(4):546-551.
[7] 刘应学.人工湿地处理生活污水研究[J].环保科技,2015,21(6):52-57.
[8] MA Hongsen,LANG J H,SLOCUM A H.Calibration-free measurement of liquid permittivity and conductivity using electrochemical impedance test cell with servomechanically adjustable cell constant[J].IEEE Sensors Journal,2009,9(5):515-524.DOI:10.1109/JSEN.2009.2015401.
[9] 范丽,尹文庆,王川,等.作物营养液电导率传感器及其测量系统设计[J].传感器与微系统,2016,35(12):92-95.DOI:10.13873/J.1000-9787(2016)12-0092-04.
[10] 武玉华.XCTD温度和电导率传感器技术研究[D].天津:国家海洋技术中心,2007.
[11] HUANG Xi,PASCAL R W,CHAMBERLAIN K,et al.A miniature, high precision conductivity and temperature sensor system for ocean monitoring[J].IEEE Sensors Journal,2011,11(12):3246-3252.DOI:10.1109/JSEN.2011.2149516.
[12] STRIGGOW K,DANKERT R.The exact theory of inductive conductivity sensors for oceanographic application[J].IEEE Journal of Oceanic Engineering,1985,10(2):175-179.DOI:10.1109/JOE.1985.1145085.
[13] SCHIEFELBEIN S L,FRIED N A,RHOADS K G,et al.A high-accuracy, calibration-free technique for measuring the electrical conductivity of liquids[J].Review of Scientific Instruments,1998,69(9):3308-3313.DOI:10.1063/1.1149095.
[14] JIA Jiabin,WANG Huarui,MILLINGTON D.Electrical resistance tomography sensor for highly conductive oil-water two-phase flow measurement[J].IEEE Sensors Journal,2017,17(24):8224-8233.DOI:10.1109/JSEN.2017.2705063.
[15] KANTAMANI T,GEORGE B.Assay of inductive-capacitive probe for the measurement of the conductivity of liquids[J].IEEE Transactions on Industrial Electronics,2020,68(9):8911-8918.DOI:10.1109/TIE.2020.3013754.
[16] 余新红,赵丽霞.学科核心素养引领下信息技术与实验教学的融合创新: 以数字化实验测定饮用水的电导率为例[J].中国现代教育装备,2023(16):29-30,46.DOI:10.13492/j.cnki.cmee.2023.16.015.
[17] 宋晨,张思瑶,刘文娜,等.双网络凝胶的制备及在锌空气电池中的性能[J].印染,2023,49(12):67-71.
[18] WATANABE Y,UGATA Y,UENO K,et al.Does liion transport occur rapidly in localized high-concentration electrolytes?[J].Physical Chemistry Chemical Physics,2023,25(4):3092-3099.DOI:10.1039/d2cp05319e.
[19] HUBE S,ESKAFI M,HRAFNKELSDóTTIR K F,et al.Direct membrane filtration for wastewater treatment and resource recovery:A review[J].Science of the Total Environment,2020,710:136375.DOI:10.1016/j.scitotenv.2019.136375.
[20] 常静,刘敏,李先华,等.城市路面径流重金属固液分配系数及其影响因素[J].水科学进展,2009,20(5):714-720.
[21] SHAND C A,SMITH S,EDWARDS A C,et al.Distribution of phosphorus in particulate, colloidal and molecular-sized fractions of soil solution[J].Water Research,2000,34(4):1278-1284.DOI:10.1016/S0043-1354(99)00240-7.
[22] CHOO H,SONG J,LEE W,et al.Effects of clay fraction and pore water conductivity on electrical conductivity of sand-kaolinite mixed soils[J].Journal of Petroleum Science and Engineering,2016,147:735-745.DOI:10.1016/j.petrol.2016.10.009.
[23] 刘丽贞,黄琪,迟殿委,等.基于随机森林回归模型和高频数据的鄱阳湖子湖电导率预测[J].水电能源科学,2023,41(10):50-53.DOI:10.20040/j.cnki.1000-7709.2023.20222548.
[24] 高金墙.无卤电缆材料pH值与电导率相关性研究[J].广东建材,2023,39(3):52-54.
[25] 江梅,范秀清.水中溶解性总固体测定方法探讨[J].市政技术,2012,30(1):121-123.
[26] XU Jiang,ZHANG Hong,DING Junjie,et al.Calcined oil shale semi-coke for significantly improved performance alginate-based film by crosslinking with Ca2+[J].Journal of Polymers and the Environment,2022,30:2405-2418.DOI:10.1007/s10924-021-02353-6.
[27] 宋远明,钱觉时,刘景相,等.SO3对固硫灰渣胶凝系统水化及性能的影响[J].建筑材料学报,2013,16(4):688-693.
[28] NOORI A,MOHAJERI S H,DELNAVAZ M,et al.A spatiotemporal monitoring model of TSM and TDS in arid region lakes utilizing Sentinel-2 imagery[J].Journal of Arid Environments,2023,216:105024.DOI:10.1016/j.jaridenv.2023.105024.
[29] ASHRAF S,RIZVI N B,RASOOL A,et al.Evaluation of heavy metal ions in the groundwater samples from selected automobile workshop areas in northern Pakistan[J].Groundwater for Sustainable Development,2020,11:100428.DOI:10.1016/j.gsd.2020.100428.
[30] 戴海洋.典型畜禽粪便堆肥过程中保氮和减排氨气研究[D].南京:南京信息工程大学,2022.DOI:10.27248/d.cnki.gnjqc.2021.000441.
[31] WANG Qi,ZHANG Ying,LI Yutong,et al.Simultaneous Cu-EDTA oxidation decomplexation and Cr(VI)reduction in water by persulfate/formate system: Reaction process and mechanisms[J].Chemical Engineering Journal,2022,427:131584.DOI:10.1016/j.cej.2021.131584.
[32] BIENFAIT H F,GARCIA-MINA J,ZAMARE?OA M.Distribution and secondary effects of EDDHA in some vegetable species[J].Soil Science and Plant Nutrition,2004,50(7):1103-1110.DOI:10.1080/00380768.2004.10408581.

备注/Memo

备注/Memo:
收稿日期: 2023-12-30
通信作者: 廖晓斌(1984-),女,教授,博士,博士生导师,主要从事水环境和水安全的研究。E-mail:liaoxb@hqu.edu.cn。
基金项目: 国家自然科学基金资助项目(51878301); 青年科技创新资助项目(23YYST06QCB29)
更新日期/Last Update: 2024-03-20