[1]林哲,李平.采用模糊扩张状态观测器的四旋翼无人机滑模轨迹跟踪控制[J].华侨大学学报(自然科学版),2023,44(2):141-149.[doi:10.11830/ISSN.1000-5013.202204025]
 LIN Zhe,LI Ping.Sliding Mode Trajectory Tracking Control for Quadrotor Unmanned Aerial Vehicle Using Fuzzy Extended State Observer[J].Journal of Huaqiao University(Natural Science),2023,44(2):141-149.[doi:10.11830/ISSN.1000-5013.202204025]
点击复制

采用模糊扩张状态观测器的四旋翼无人机滑模轨迹跟踪控制()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第2期
页码:
141-149
栏目:
出版日期:
2023-03-14

文章信息/Info

Title:
Sliding Mode Trajectory Tracking Control for Quadrotor Unmanned Aerial Vehicle Using Fuzzy Extended State Observer
文章编号:
1000-5013(2023)02-0141-09
作者:
林哲 李平
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
LIN Zhe LI Ping
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
四旋翼无人机 轨迹跟踪控制 模糊扩张状态观测器 非奇异快速终端滑模控制
Keywords:
quadrotor unmanned aerial vehicle trajectory tracking control fuzzy extended state observer nonsingular fast terminal sliding mode control
分类号:
V279;TP273.3
DOI:
10.11830/ISSN.1000-5013.202204025
文献标志码:
A
摘要:
针对四旋翼无人机(UAV)的轨迹跟踪控制存在外界未知扰动的问题,提出一种基于模糊扩张状态观测器的非奇异快速终端滑模控制算法.首先,根据双闭环控制结构分别对姿态内环、位置外环引入模糊扩张状态观测器,利用该观测器对系统所受到外部总扰动进行在线估计.然后,根据模糊扩张状态观测器的观测值,设计非奇异快速终端滑模控制器,保证四旋翼无人机的状态变量可在有限时间内收敛于期望轨迹.最后,根据李亚普诺夫理论,得出四旋翼无人机系统的闭环稳定性,并通过仿真对比实验验证该控制算法的优越性.结果表明:所提的控制算法可以提高跟踪性能,并有效增强系统的抗外界干扰能力.
Abstract:
A nonsingular fast terminal sliding mode control algorithm based on fuzzy extended state observer is proposed to solve the problem of unknown disturbances in the trajectory tracking control of a quadrotor unmanned aerial vehicle(UAV). Firstly, according to the double closed-loop control structure, fuzzy extended state observers are introduced into the inner attitude loop and the outer position loop respectively, and the observer is used to estimate the total external disturbance of the system on-line. Then, a nonsingular fast terminal sliding mode controller is designed based on the observed value of the fuzzy extended state observer to ensure that the state variables of the quadrotor UAV can converge to the desired trajectory in finite time. Finally, the closed-loop stability of the quadrotor UAV system is derived based on Lyapunov theory, and the superiority of the control method is verified through simulation and comparison experiments. The results show that the proposed control algorithm can improve the tracking performance and effectively enhance the system’s resistance to external disturbances.

参考文献/References:

[1] 黄志伟,徐苏楠,韦一,等.STM32的多传感器融合姿态检测[J].华侨大学学报(自然科学版),2015,36(4):422-426.DOI:10.11830/ISSN.1000-5013.2015.04.0422.
[2] CAO Ning,LYNCH A F.Inner-outer loop control for quadrotor UAVs with input and state constraints[J].IEEE Transactions on Control Systems Technology,2015,24(5):1797-1804.DOI:10.1109/TCST.2015.2505642.
[3] KOKSAL N,AN Hao,FIDAN B.Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance[J].ISA Transactions,2020,105:98-110.DOI:10.1016/j.isatra.2020.06.006.
[4] 陶英杰,张维纬,马昕,等.面向无人机视频分析的车辆目标检测方法[J].华侨大学学报(自然科学版),2022,43(1):111-118.DOI:10.11830/ISSN.1000-5013.202011014.
[5] GHADIOK V,GOLDIN J,REN Wei.On the design and development of attitude stabilization, vision-based navigation,and aerial gripping for a low-cost quadrotor[J].Autonomous Robots,2012,33(1/2):41-68.DOI:10.1007/s10514-012-9286-z.
[6] CAI Wenjing,SHE Jinhua,WU Min,et al.Disturbance suppression for quadrotor UAV using sliding-mode-observer-based equivalent-input-disturbance approach[J].ISA Transactions,2019,92:286-297.DOI:10.1016/j.isatra.2019.02.028.
[7] ANTONIO-TOLEDO M E,SANCHEZ E N,ALANIS A Y,et al.Real-time integral backstepping with sliding mode control for a quadrotor UAV[J].IFAC-PapersOnLine,2018,51(13):549-554.DOI:10.1016/j.ifacol.2018.07.337.
[8] LEE D,KIM H J,SASTRY S.Feedback linearization vs.adaptive sliding mode control for a quadrotor helicopter[J].International Journal of Control Automation and Systems,2009,7(3):419-428.DOI:10.1007/s12555-009-0311-8.
[9] OKYERE E,BOUSBAINE A,POYI G T,et al.LQR controller design for quad-rotor helicopters[J].The Journal of Engineering,2019,2019(17):4003-4007.DOI:10.1049/joe.2018.8126.
[10] YANG Hongjiu,CHENG Lei,XIA Yuanqing,et al.Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind[J].IEEE Transactions on Control Systems Technology,2017,26(4):1400-1405.DOI:10.1109/TCST.2017.2710951.
[11] 郑佳静,李平.采用滑模观测器的四旋翼无人机执行器加性故障容错控制[J].华侨大学学报(自然科学版),2019,40(4):437-443.DOI:10.11830/ISSN.1000-5013.201810019.
[12] ZHENG Enhui,XIONG Jingjing,LUO Jiliang.Second order sliding mode control for a quadrotor UAV[J].ISA Transactions,2014,53(4):1350-1356.DOI:10.1016/j.isatra.2014.03.010.
[13] XIONG Jingjing,ZHENG Enhui.Position and attitude tracking control for a quadrotor UAV[J].ISA Transactions,2014,53(3):725-731.DOI:10.1016/j.isatra.2014.01.004.
[14] HOU Zhiwei,LU Peng,TU Zhangjie.Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure[J].Aerospace Science and Technology,2020,98:105716.DOI:10.1016/j.ast.2020.105716.
[15] HUA Changchun,WANG Kai,CHEN Jiangnan,et al.Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor[J].Nonlinear Dynamics,2018,94(1):343-354.DOI:10.1007/s11071-018-4362-3.
[16] MOFID O,MOBAYEN S.Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties[J].ISA Transactions,2018,72:1-14.DOI:10.1016/j.isatra.2017.11.010.
[17] LI Shushuai,WANG Yaonan,TAN Jianhao,et al.Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft[J].Neurocomputing,2016,216:126-134.DOI:10.1016/j.neucom.2016.07.033.
[18] MAQSOOD H,QU Yaohong.Nonlinear disturbance observer based sliding mode control of quadrotor helicopter[J].Journal of Electrical Engineering and Technology,2020,15(3):1453-1461.DOI:10.1007/s42835-020-00421-w.
[19] 高俊山,段立勇,邓立为.四旋翼无人机抗干扰轨迹跟踪控制[J].控制与决策,2021,36(2):379-386.DOI:10.13195/j.kzyjc.2019.0875.
[20] ZHOU Laihong,ZHANG Juqian,DOU Jingxin,et al.A fuzzy adaptive backstepping control based on mass observer for trajectory tracking of a quadrotor UAV[J].International Journal of Adaptive Control and Signal Processing,2018,32:1675-1693.DOI:10.1002/acs.2937.
[21] NAGHDI M,SADRNIA M A.A novel fuzzy extended state observer[J].ISA Transactions,2020,102:1-11.DOI:10.1016/j.isatra.2019.07.018.
[22] BOUKATTAYA M,MEZGHANI N,DAMAK T.Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems[J].ISA Transactions,2018,77:1-19.DOI:10.1016/j.isatra.2018.04.007.
[23] VAN M,GE Shuzhi,REN Hongliang.Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control[J].IEEE Transactions on Cybernetics,2017,47(7):1681-1693.DOI:10.1109/TCYB.2016.2555307.

相似文献/References:

[1]郑佳静,李平.采用滑模观测器的四旋翼无人机执行器加性故障容错控制[J].华侨大学学报(自然科学版),2019,40(4):437.[doi:10.11830/ISSN.1000-5013.201810019]
 ZHENG Jiajing,LI Ping.Fault Tolerant Control of Actuator Additive Fault for Quadrotor Using Sliding Mode Observer[J].Journal of Huaqiao University(Natural Science),2019,40(2):437.[doi:10.11830/ISSN.1000-5013.201810019]
[2]程前,聂卓赟,方浩澄,等.单目视觉定位实现机器人跟踪的实验系统和控制方法[J].华侨大学学报(自然科学版),2019,40(4):542.[doi:10.11830/ISSN.1000-5013.201811038]
 CHENG Qian,NIE Zhuoyun,FANG Haocheng,et al.Experimental System and Control Method for Robot Tracking by Monocular Vision Positioning[J].Journal of Huaqiao University(Natural Science),2019,40(2):542.[doi:10.11830/ISSN.1000-5013.201811038]

备注/Memo

备注/Memo:
收稿日期: 2022-03-29
通信作者: 李平(1981-),女,副教授,博士,主要从事鲁棒控制及非线性系统的研究.E-mail:pingping_1213@163.com.
基金项目: 福建省科技重大项目(2020HZ02014); 福建省本科高校教育教学改革研究项目(FBJG20210239); 华侨大学研究生教育教学改革研究资助项目(20YJG009)
更新日期/Last Update: 2023-03-20